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Abstract

A hybrid method is proposed to study the transient deformation of liquid filled capsules with elastic membranes under
flow. In this method, the immersed boundary concept is introduced into the framework of lattice Boltzmann method, and
the multi-block strategy is employed to refine the mesh near the capsule to increase the accuracy and efficiency of compu-
tation. A finite element model is incorporated to obtain the forces acting on the membrane nodes of the three-dimensional
capsule which is discretized into flat triangular elements. The present method was validated by studying the transient defor-
mation of initially spherical and oblate-spheroidal capsules with various membrane constitutive laws under shear flow; and
there were good agreements with previous theory or numerical results. The versatility of the present method was demon-
strated by studying the effects of inertia on the deformation of capsules in shear flow; and the inertia effects were found to
be significant. The transient deformation of capsules with initially biconcave discoid shape in shear flow was also studied.
The unsteady tank-treading motion was observed, in which the capsule undergoes periodic shape deformation and incli-
nation oscillation while its membrane is rotating around the liquid inside. To our knowledge, this motion of three-dimen-
sional biconcave discoid capsules has not been fully recovered by numerical simulation so far.
� 2008 Elsevier Inc. All rights reserved.

Keywords: Three-dimensional capsule deformation; Fluid–structure interaction; Multi-block lattice Boltzmann method; Immersed bou-
ndary method; Finite element model
1. Introduction

The flow-induced deformation of a liquid filled capsule enclosed by a thin elastic membrane has been
studied by many researchers in cellular biology, bioengineering and chemical engineering. It is important in
fundamental research as well as in biomedical and industrial applications. Furthermore it is the first step to
model more complex flow situations which involve capsule suspensions, such as human microcirculation, cell
filtration and drug delivery.
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doi:10.1016/j.jcp.2008.03.017

* Corresponding author. Tel.: +65 6516 2225; fax: +65 6779 1459.
E-mail address: mpelowht@nus.edu.sg (H.T. Low).

mailto:mpelowht@nus.edu.sg


6352 Y. Sui et al. / Journal of Computational Physics 227 (2008) 6351–6371
In the dynamic motion of capsules under flow, the fluid–structure interaction plays a key role. The complex
mechanism of fluid–structure interaction makes theoretical analysis quite difficult. In most theoretical studies
[1,2], simple geometry and small deformation of the capsules are assumed. As an alternative approach, numer-
ical simulation has attracted much attention.

The arbitrary Lagrangian Eulerian (ALE) method [3,4] is a direct strategy to treat fluid–structure interac-
tion. The boundary of the fluid domain moves with the motion of the fluid–structure interface, and the mesh is
reconstructed. The ALE method has high-order accuracy but is very computationally expensive. For capsules
with complex geometry or under large deformation, the re-meshing procedure will be very difficult and time-
consuming.

The advected-field method, directly inspired by the phase-field approach, was proposed by Biben and Mis-
bah [5]. The local membrane incompressibility is imposed to the phase-field approach, and the shear elasticity
of the membrane is not taken into account. The advected-field method is suitable to deal with the deformation
of vesicles, which are liquid drops enclosed by incompressible membranes. However, vesicles are different from
capsules which are liquid drops enclosed by elastic membranes.

The boundary element method (BEM) [6] is most prevailing for studying capsule deformation in Stokes
flow. One significant advantage of BEM is that the governing equations are solved only on the capsule inter-
face, and thus the geometrical dimension of the problem can be reduced by one. With BEM, Pozrikidis and co-
workers [7–9] and Lac et al. [10] have studied the transient deformation of capsules with various shapes and
membrane properties, and obtained results consistent with experiments. The BEM is valid for creeping flow
conditions. For capsules with complex shapes, like the biconcave disk, the simulation of tank treading motion
was of limited duration because of numerical instabilities due to grid degradation [8].

The immersed boundary method (IBM) was developed by Peskin [11,12], to simulate blood flow in the
heart. In this method, a force density is distributed to the Cartesian mesh in the vicinity of the moving bound-
ary in order to account for the its effect. The force density is calculated from the boundary’s constitutive law.
With IBM, Eggleton and Popel [13] studied the large deformation of three-dimensional capsules in shear flow.
However, the capsule response was followed for short times due to heavy computational load.

The lattice Boltzmann method (LBM), a kinetic based approach for simulating fluid flow, has been devel-
oped extensively and proven to be a robust and efficient method for solving complex fluid systems [14–17]. The
standard lattice Boltzmann method, which employs a uniform Cartesian mesh, has been combined with
immersed boundary method by Feng and Michaelides [18,19] for solving rigid particles flow. Recently, Lalle-
mand et al. [20] coupled the lattice Boltzmann method with the front tracking method to study the dynamics
of deformable interface with surface tension. Filippova et al. [21], as well as Yu and Girimaji [22] have pro-
posed the multi-block lattice Boltzmann method, in which the computational domain is divided into blocks:
fine mesh covers the blocks in which the gradients are large and coarse mesh is employed for other blocks. The
computational efficiency of lattice Boltzmann method has been substantially improved by the multi-block
strategy.

Recently, Peng et al. [23] applied the multi-block strategy in the immersed boundary lattice Boltzmann
method (IB-LBM), and studied flow past two-dimensional stationary solid boundaries. The present authors
[24,25] also combined these methods and studied the transient behaviors of two-dimensional capsules which
deform under flow. Two-dimensional simulation shares a number of common features with three-dimensional
study. However, it must be noted that for flow-induced deformation of capsules, two-dimensional simulation
is a large simplification. Furthermore, the numerical modeling capsules in two and three dimensions are very
different. Three-dimensional numerical modeling is much more complicated. For example, the membrane of a
two-dimensional capsule is an elastic ring, and it is not difficult to discretized it into a set of line elements. The
membrane tension can also be easily obtained from the strain of the line elements. For three-dimensional cap-
sules, the discretization of the membrane involves plane elements, and the approach to obtain the membrane
tension is not so straightforward as that of two-dimensional study.

In the present paper, the IB-LBM with multi-block strategy [24] is extended to three-dimensional simula-
tion. The capsule membrane is discretized into unstructured flat triangular elements. To obtain the forces act-
ing on the membrane nodes, a finite element model [26,27] is incorporated into the multi-block IB-LBM.

The flow field is solved by LBM, and the capsule interface is explicitly tracked by IBM. Only the compu-
tational domain near the capsule is covered by fine mesh, so that the computational accuracy and efficiency is
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increased. The present method is validated by studying the transient deformation of initially spherical and
oblate spheroidal capsules with various membrane constitutive laws under shear flow. The versatility of the
present method is demonstrated by studying the effects of inertia on the deformation of capsules, and the
deformation of capsules with complex shape like the biconcave discoid.

2. Membrane model

Three different membrane laws are tested. The three-dimensional capsule is discretized into flat triangular
elements. The forces acting on the membrane nodes are obtained from a finite element model.

2.1. Membrane constitutive laws

In the present study, three different membrane constitutive laws are employed and tested. The capsule mem-
branes are usually relatively thin, and thus the thickness can be neglected. A simple constitutive equation is the
neo-Hookean (NH) law, with strain energy function having the form:
W NH ¼ 1

6
E I1 � 1þ 1

I2 þ 1

� �
ð1Þ
where E is the surface shear elasticity modulus, and I1 and I2 are the first and second strain invariants, with
I1 ¼ k2

1 þ k2
2 � 2, I2 ¼ ðk1k2Þ2 � 1. The term k1 and k2 are the principle strains. The NH law corresponds to

membranes made of polymerized material. The area dilation is unrestricted and is compensated by the thin-
ning of the membrane.

The zero-thickness (ZT) shell equation is another version of the neo-Hookean (NH) law, which has been
used by Ramanujan and Pozrikidis [8]:
W ZT ¼ 1

6
E I1 � logðI2 þ 1Þ þ 1

2
log2ðI2 þ 1Þ

� �
ð2Þ
The two strain energy functions (Eqs. (1) and (2)) are equivalent for small deformation.
Another constitutive equation is the Skalak’s law (SK) proposed by Skalak et al. [28] to model the mem-

brane of red blood cells:
W SK ¼ 1

4
E

1

2
I2

1 þ I1 � I2

� �
þ 1

8
CEI2

2 ð3Þ
In the right hand side of the equation, the first term represents the shear effects, and second term accounts for
the area dilation. The term C is the ratio between shear elasticity modulus and area dilation modulus, which is
quite large for incompressible biological membranes.

2.2. Membrane disretization

The 3D capsule membrane is discretized into flat triangular elements. The triangulation procedure is similar
to that of Ramanujan and Pozrikidis [8]. To discretize the unstressed interface, each triangular face of a reg-
ular octahedron is subdivided into 4n triangular elements. These elements are then projected radically onto a
sphere. The geometry of each element is described by its three vertices. The discretization of a sphere surface is
shown in Fig. 1(a). For oblate spheroid with aspect ratio b/a, the mapping system is stated as
xobl ¼ Rx; yobl ¼ Ry; zobl ¼ ðb=aÞRz ð4Þ

For the biconcave discoid, which is chosen to be the shape of red blood cell at rest, the mapping system is as
follows:
xrbc ¼ Rx; yrbc ¼ Ry; zrbc ¼ 0:5Rð1� r2Þ0:5ð0:207þ 2:003r2 � 1:123r4Þ ð5Þ
where r2 = x2 + z2, the term R in Eqs. (4) and (5) is the adjusting factor to keep the capsule volume constant.
The discretization of a biconcave discoid surface is shown in Fig. 1(b).
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Fig. 1. Discretization of (a) a sphere; (b) a biconcave disk shape.
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2.3. Finite element membrane model

A finite element membrane model is employed to obtain the forces acting at the discrete nodes of the mem-
brane. In this section, only a brief description of this model is given. The detailed treatment can be found in
Charrier [26] as well as Shrivastava and Tang [27].

In the finite element model, the membrane of the capsule is represented by a patchwork of flat triangular
elements which remain flat after deformation, and the load on a element is represented by concentrated loads
on the membrane nodes. Only in-plane stresses and strains exist. In the three-dimensional deformation of the
capsule, the membrane elements do not stay in the same plane after being displaced. In this model, the
deformed element is transformed to the plane of the undeformed element, so that the relative displacement
of the nodes and the corresponding forces are easily determined. The equations developed for the force exerted
at the nodes of an element of the deformed membrane are given in the plane of the element.

The displacements are approximated by linear shape functions in the plane of the element with coordinates
(x0, y0). They are described by: v(x0, y0) = ax0 + by0 + c. The unknown coefficients a, b, and c are determined
using known values of the displacements at the three nodes of the element. After the displacements of the three
nodes of an element are known, its state of strain k1 and k2 can be obtained. The relation of membrane strain
and membrane energy is governed by the constitutive law, which is determined by the membrane materials.
With a constitutive law chosen, one can follow the usual finite element procedure and derive the relations
between nodal forces and nodal displacements. The principle of virtual work is used to calculate the forces
at the three nodes of an element. Because each node of the discrete membrane belongs to more than one ele-
ment, the resultant force on a node is the sum of the forces exerted by the m elements attached to the node. So
far, the force calculated is the fluid force acting on the capsule membrane. Its equal and opposite counterpart
is the force acting on the fluid. It is distributed to the surrounding fluid by the approach described by the
immersed boundary method.

3. Numerical method

In the present hybrid approach, several methods are combined to simulate the flow-induced deformation of
three-dimensional capsules. The immersed boundary concept is introduced into the framework of lattice
Boltzmann method. The multi-block strategy is employed to refine the mesh near the capsule to increase
the accuracy and efficiency of computation. The finite element membrane model, described in the previous sec-
tion, is incorporated to obtain the membrane forces of the immersed boundary method.

3.1. Immersed boundary method

In the immersed boundary method of Peskin [11,12], a force density is distributed to the Cartesian mesh in
the vicinity of the moving boundary in order to account for the effect of the boundary. To explain the
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Fig. 2. Schematic illustration of a body whose boundary has been divided into Lagrangian nodes immersed in a Cartesian mesh.
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immersed boundary method, consider a massless elastic capsule with boundary C immersed in the fluid
domain X (see Fig. 2). The fluid domain X is represented by Eulerian coordinates x, while the boundary of
the capsule C, is represented by Lagrangian coordinates s. Any position on the capsule membrane can be writ-
ten as X(s, t). The term F(s, t) represents the membrane force density induced by capsule deformation, and the
term f(x, t) represents the fluid body force density.

The non-slip boundary condition is satisfied by letting the flexible membrane move at the same velocity as
the fluid around it. That is
oXðs; tÞ
ot

¼ uðXðs; tÞ; tÞ ð6Þ
This motion will cause the capsule to deform. The membrane force density F(s, t) is obtained from the finite
element membrane model discussed in Section 2.3, and is distributed to the fluid mesh points near it by
fðx; tÞ ¼
Z

C
Fðs; tÞdðx� Xðs; tÞÞds ð7Þ
where d is a smoothed approximation of the Dirac Delta function. In the present three-dimensional study, it is
chosen to be:
dðx� Xðs; tÞÞ ¼ dðx� X ðs; tÞÞdðy � Y ðs; tÞÞdðz� Zðs; tÞÞ ð8Þ

where
dðrÞ ¼
1
4

1þ cos pjrj
2

� �� �
r 6 2

0 r > 2

(
ð9Þ
The same approximation function is used to obtain the velocities of the Lagrangian nodes on the moving
boundary. The mathematical form can be written as follows, which illustrates the implementation of Eq. (6):
oX

ot
¼
Z

X
uðx; tÞdðx� Xðs; tÞÞdx ð10Þ
3.2. Multi-block lattice Boltzmann method

The lattice Boltzmann method is a kinetic-based approach for simulating fluid flows. It decomposes the con-
tinuous fluid flow into pockets of fluid particles which can only stay at rest or move to one of the neighboring
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nodes. The D3Q19 model (see Fig. 3) is one of the commonly used models in 3D simulation, in which the dis-
crete lattice Boltzmann equation has the form of [29]:
fiðxþ eiDt; t þ DtÞ � fiðx; tÞ ¼ �
1

s
½fiðx; tÞ � f eq

i ðx; tÞ� ð11Þ
where fi(x, t) is the distribution function for particles with velocity ei at position x and time t, Dt is the lattice
time interval, f eq

i ðx; tÞ is the equilibrium distribution function and s is the non-dimensional relaxation time.
In the D3Q19 model, the fluid particles have the possible discrete velocities stated as follows:
½e0; e1; e2; e3; e4; e5; e6; e7; e8; e9; e10; e11; e12; e13; e14; e15; e16; e17; e18�

¼
0 1 �1 0 0 0 0 1 1 �1 �1 1 �1 1 �1 0 0 0 0

0 0 0 1 �1 0 0 1 �1 1 �1 0 0 0 0 1 1 �1 �1

0 0 0 0 0 1 �1 0 0 0 0 1 1 �1 �1 1 �1 1 �1

2
64

3
75 ð12Þ
The equilibrium distribution function f eq
i ðx; tÞ is in the form of:
f eq
i ¼ Eiðq; uÞ ð13Þ

with Eiðq; uÞ ¼ xiq 1þ e � u
c2

s

þ uu : ðeiei � c2
s IÞ

2c4
s

� �
ð14Þ
where xi is the weighing factor, it equals 1/3 for i = 0, 1/18 for i = 1–6 and 1/36 for i = 7–18. The term cs rep-
resents the sound speed, and equals Dx=ð

ffiffiffi
3
p

DtÞ.
The relaxation time is related to the kinematic viscosity in Navier–Stokes equation in the form of
m ¼ s� 1

2

� �
c2

s Dt ð15Þ
Once the particle density distribution is known, the fluid density and momentum are calculated, using:
q ¼
X

i

fi; qu ¼
X

i

eifi ð16Þ
In the present paper, the multi-block lattice Boltzmann method proposed by Yu and Girimaji [22] is
employed. The computational domain is divided into blocks which are connected through the interface. On
the interface between blocks, the exchange of variables follows a certain relation so that the mass and momen-
tum are conserved and the stress is continuous across the interface.

Consider a two-block system to explain the idea of the multi-block method. The ratio of lattice space
between the two blocks is defined as: m = Dxc/Dxf, where Dxc and D xf are the lattice space of the coarse
and fine mesh blocks respectively. For a given lattice space, the fluid viscosity can be obtained from Eq.
(15). In order to keep a constant viscosity, the relaxation parameter sf in fine mesh and sc in coarse mesh, must
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Fig. 3. D3Q19 model.
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satisfy the following relation: sf = 0.5 + m(sc � 0.5). The variables and their derivatives on the grid must be
continues across the block interface. To keep this continuity, the relation of the density distribution function
in the neighboring blocks is proposed as
~f c
i ¼ f eq;f

i þ m
sc � 1

sf � 1
½~f f

i � f eq;f
i �; ~f f

i ¼ f eq;c
i þ sf � 1

mðsc � 1Þ ½
~f c

i � f eq;c
i � ð17Þ
where ~f i is the post-collision density distribution function.
The typical structure of interface is illustrated in Fig. 4. The fine block boundary MN is in the interior of

the coarse block. The coarse block boundary AB is in the interior of the fine block. This arrangement is con-
venient for information exchange. Here, MN and AB represent planes projected onto the paper. On the
boundary of fine block MN, there is no information on the grid points denoted by the solid symbol d in
Fig. 4. It is obtained from spatial interpolation based on the information on the grid nodes denoted by the
open symbol � on MN. The symmetric, 2D cubic spline spatial fitting of Yu and Girimaji [22] is employed.
Because the fluid particle has the same streaming velocity on each block, the computation marches m steps
on the fine-mesh block for every one step on the coarse-mesh block. On the fine block boundary MN, tem-
poral interpolation is needed to obtain ~f aðtnþ1=m;MNÞ. The three-point Lagrangian formula of Yu and Giri-
maji [22] is employed for temporal interpolation.

3.3. The hybrid method

In the present paper, the immersed boundary method is combined with the multi-block lattice Boltzmann
method. The membrane forces of the immersed boundary method are obtained from the finite element mem-
brane model. In order to solve the flow field with a force density the lattice Boltzmann equation must be mod-
ified. Several forms of LBE which can handle a force density have been proposed, for example the equations of
He et al. [30], Luo [31] and Guo et al. [32]. Guo et al.’s approach [32] is employed here as it is accurate for
unsteady flow with force changing with time and space, in which the modified lattice Boltzmann equation
is in the form of:
fiðxþ eiDt; t þ DtÞ � fiðx; tÞ ¼ �
1

s
½fiðx; tÞ � f eq

i ðx; tÞ� þ DtF i ð18Þ

where f eq
i ¼ Eiðq; u�Þ ð19Þ
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with qu� ¼
X

i

eifi þ
1

2
fDt ð20Þ

F i ¼ 1� 1

2s

� �
xi

ei � u

c2
s

þ ðei � uÞ
c4

s

ei

� �
� f ð21Þ
In the computation, a two-grid system is employed. The lattice space ratio between coarse and fine grids equals
two. The capsules are immersed in the fine mesh block. The present procedure for multi-block computation is
very similar to that proposed by Yu and Girimaji [22]. The only difference exists in the computation on the fine
mesh block. That is, a subroutine implementing the immersed boundary method is added before the streaming
and collision steps.

4. Results and discussion

The present method is applied to simulate the deformation of spherical, oblate spheroidal and biconcave
discoid capsules in simple shear flow. The capsules are unstressed at their initial shapes. The internal and exter-
nal fluids have the same property. The dimensionless shear rate is defined as: G = lka/E, where l is the vis-
cosity of the surrounding fluid, k is the shear rate, E is the shear elasticity of the membrane. The equivalent
radius a is defined as: a = (3V/4p)1/3, where V is capsule volume. In the present study, the equivalent radius a
is chosen as the length scale, ka is chosen as the velocity scale and 1/k the time scale. The Reynolds number
defined as: Re = l(ka)a/q, where q is the density of the surrounding fluid.

4.1. Spherical capsules

4.1.1. Neo-Hookean membrane

To validate the present method, the transient deformation of spherical capsules in unbounded simple shear
flow (illustrated in Fig. 5) is studied. It has been well studied by Pozrikidis [7] with ZT membrane law and Lac
et al. [10] with NH membrane law. In the present section, the capsule membrane follows NH law. The Rey-
nolds number is at 0.025.

It is important to choose a computational domain which is large enough to neglect the boundary effect and
has sufficient grid resolution to obtain convergent results. Numerical simulations are carried out under various
computational domain sizes and grid resolutions. The temporal evolution of the capsule’s Taylor shape
parameter Dxz is chosen as the indicator. It is defined as: Dxz=(L � B)/(L + B), where L and B are the semi-
major and semiminor lengths of the capsule in the plane of shear [10]. The dimensionless shear rate is chosen
to be G = 0.2, at which the deformation is large.
x

z
u = (kz , 0, 0)

y

Plane of shear

Fig. 5. Illustration of a capsule in simple shear flow.
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The computational domain is a cubic box. The capsule is at the center of the domain, and its membrane is
discretized into 8192 triangular elements connecting 4098 nodes. The fine mesh block covers a small cubic box,
which has a side length of 4a and its center is coinciding with that of the computational domain. The other
area is covered with coarse mesh. The grid resolutions in the fine and coarse blocks are Dxf =
Dyf = Dzf = a/12 and Dxc = Dyc = Dzc = a/6, respectively. The computational domains with outer boundary
length of 8a, 10a and 12a are tested. The outer boundary condition is set to be the unperturbed simple shear
flow. The temporal evolutions of Taylor shape parameter under various domain sizes at G = 0.2 are presented
in Fig. 6(a). It is shown that a cubic computational domain with side 10a is large enough to neglect the bound-
ary effect.

Grid convergence study is carried out on the computational domain with side 10a. The diameter of the
spherical capsule 2a was covered by 20, 24 or 32 lattice spaces of the fine mesh block. With the finest mesh,
the capsule membrane is discretized into 32768 flat triangular elements connecting 16386 nodes. The temporal
evolutions of Taylor shape parameter under various grid resolutions at G = 0.2 is presented in Fig. 6(b). From
the result it is seen that the grid resolution of Dxf = Dyf = Dzf = a/12, with the capsule membrane discretized
into 8192 triangular elements connecting 4098 nodes, is sufficient to capture the important characteristics.
This computational domain and grid resolution are used in the simulations presented in this section and
Section 4.2.

Another simulation is done for the same capsule and shear rate, using uniform mesh resolution of
Dxf = Dyf = Dzf = a/12 covering the whole computational domain, which is actually the original IB-LBM
[18,19]. It is seen that the temporal evolution of Taylor shape parameter curve (Fig. 6(b)) nearly coincide with
that of the present multi-block IB-LBM. In the present method, only 6.4% of the computational domain is
covered with fine mesh, thus quite a lot of computational effort is saved.

The deformation of spherical capsules with the dimensionless shear rate G ranging from 0.0125 to 0.2 is
studied. The results show that after being immersed in the flow, a capsule deforms to a steady shape and incli-
nation; then the membrane rotates around the liquid inside (tank-treading motion). These observations are
similar to those reported by Pozrikidis [7] and Lac et al. [10]. For G = 0.0125, the steady deformed capsule
and the flow field around the capsule’s cross section in the plane of shear is presented in Fig. 7. It is observed
that the cross section of the capsule resembles a closed streamline which shows that the capsule has achieved a
steady shape. Recirculating regions are found at two ends of the capsule.

The temporal evolutions of the capsules’ Taylor deformation parameter Dxz are presented in Fig. 8(a), and
are compared with the results of Lac et al. [10] who used the boundary element method. The present model has
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Fig. 6. Temporal evolution of the capsule’s Taylor shape parameter at G = 0.2 under various (a) computational domain sizes; (b) grid
resolutions.



Fig. 7. Steady deformed capsule and the flow field around the cross section of the capsule in the plane of shear.
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The straight horizontal bold line represents the predictions of the second order small-deformation theory of Barthès-Biesel [1] for
G = 0.0125, 0.025, 0.05.
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considered inertia, but due to the very small Reynolds number of 0.025, the inertia effect is negligible. Good
quantitative agreements are observed. It is seen the time taken to achieve steady shape is shorter if the dimen-
sionless shear rate is lower. A lower shear rate means the ratio between elastic and shear forces is larger, thus
the capsule only needs to deform a little to generate enough elastic force to balance the viscous shear force.
At small dimensionless shear rates, the steady Taylor shape parameter is compared with that predicted by
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Barthes-Biesel [1] who used the second order small-deformation theory. For G = 0.0125 and 0.025, the agree-
ment is satisfactory (Fig. 8(a)). For G = 0.05, due to the relatively large deformation, the agreement is not
good as the small deformation theory is not valid.

Fig. 8(b) presents the temporal evolution of the inclination angle (with respect to x-axis) of the capsule’s
cross section in the plane of shear. With the shear rate increasing, the capsules are observed to be more aligned
with the flow. At low shear rates, the steady inclinations of the present simulation agree well with that pre-
dicted by Barthes-Biesel [1] using second order small-deformation theory.

After the capsules have achieved steady shapes, their cross sections in x–z plane are presented in Fig. 9. It is
seen that at low shear rates, the capsules are slightly deformed and their cross sections are elliptical; at high
shear rates, the cross sections of the deformed capsules are slender and sigmoidal.

For a spherical capsule with elastic membrane in shear flow, it will deform to a steady shape with a fixed
inclination, and then the membrane rotates round the liquid inside. If the non-slip boundary condition could
be strictly satisfied, the cross section of the capsule will be a perfectly closed stream line. In Fig. 10, the stream-
lines around the cross section of the steady deformed capsules at G = 0.0125 and 0.1 are presented. It is seen
from Fig. 10(a) and (b) that the cross sections of the capsules seem to resemble closed streamlines. However,
upon amplifying the region near the cross sections, it was found that the streamlines on the cross sections
are not perfectly aligned with the capsule interface. This is more apparent at larger dimensionless shear rates
when a capsule is highly deformed from a spherical shape, as shown in Fig. 10(c). However, the transverse
component of the membrane velocity is much smaller than the tangential part, so that the capsule could still
tank tread with a nearly steady shape for a very long time. In a recent paper, Lallemand et al. [20] proposed
the front tracking lattice Boltzmann method in which the non-slip boundary condition can be accurately
achieved.
4.1.2. Skalak membrane

As another validation of the present method, the transient deformation of spherical capsules with Skalak
membrane in unbounded shear flow is studied. The moduli ratio C in Eq. (3) is chosen to be 1 to be the same
as that of Lac et al. [10] who used the BEM. The Reynolds number in the present study equals 0.025. The
computational domain and grid resolution are the same as that in the last section.

Similar with the results of previous Section 4.1.1, the capsule deforms to a steady shape and then the mem-
brane carries out tank-treading motion. The temporal evolutions of the capsules’ Taylor deformation param-
eter are presented in Fig. 11(a). The steady values are compared with the previous results reported by Lac et al.
[10] using boundary element method. Satisfactory agreements are observed with the results of Lac et al. whose
capillary number e is related to the dimensionless shear rate G of the present study by: e = 2G. Fig. 11(b) pre-
sents the temporal evolution of the inclination angle of the capsule’s cross section of in the plane of shear.
However there is no previous result with SK membrane available for comparison. It is seen that with the shear
rate increasing, the capsules are more aligned with the flow.
G = 0.0125 G = 0.025 G = 0.05

G = 0.1 G = 0.2

Fig. 9. Cross sections of the steady formed capsules in the plane of shear.
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Fig. 10. Streamlines around the cross sections of the steady formed capsules in the plane of shear (a) G = 0.0125; (b) G = 0.1; (c) regional
amplification for (b). The bold solid lines represent the membrane.
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4.2. Oblate spheroidal capsules

As a further validation of the present method, the transient deformation of oblate spheriodal capsules, with
semimajor to semiminor axes ratio of 10:9 and 2:1, in shear flow is studied. These cases are more challenging
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Fig. 11. Temporal evolution of (a) Taylor shape parameter; (b) inclination angle of the initially spherical capsules with SK membranes.
The straight horizontal bold line represents results of Lac et al. [10].
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Fig. 12. Snapshots of an initially oblate spheroidal capsule’s cross section in the plane of shear during the tank treading motion. The
symbol d represents the same membrane node which is moving.
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than those in the previous section because of the more complicated capsule shapes. In this section, the capsules
membrane follows zero-thickness law, same as that of Ramanujan and Pozrikidis [8] who used BEM. The
Reynolds number in the present study is at 0.025. The computational domain and grid resolution is this sec-
tion is the same as that in the previous sections.

For a spherical capsule in shear flow, the capsule deforms and then the membrane performs tank treading
around the liquid inside. During this tank treading motion, the shape and inclination of the capsule remains
unchanged. The motion of oblate spheroidal capsules is different. It has been observed that after a transient
stage, the capsule membrane rotates around the liquid inside; during this tank treading motion, the capsule
undergoes periodical shape deformation and inclination oscillation. The results are similar to those predicted
by Ramanujan and Pozrikidis [8] For a capsule with semimajor to semiminor axes ratio of 10:9 at G = 0.1, the
snapshots of the capsule’s cross section in the plane of shear during the unsteady tank treading motion are
presented in Fig. 12. It is seen that the capsule are changing shape and inclination while its membrane is rotat-
ing round the liquid inside.
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Fig. 13. Temporal evolution of (a) Taylor shape parameter; (b) inclination angle of oblate spheroidal capsules with semimajor to
semiminor axes ratio of 10:9.
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Fig. 14. Temporal evolution of (a) Taylor shape parameter; (b) inclination angle of oblate spheroidal capsules with semimajor to
semiminor axes ratio of 2:1.
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The temporal evolutions of the capsules’ Taylor deformation parameter and inclination angle are presented
in Fig. 13(a) and (b) for capsules with semimajor to semiminor axes ratio of 10:9 at G = 0.1 and 0.2. The
results of a more oblate capsule is presented in Fig. 14(a) and (b), which are for capsules with semimajor
to semiminor axes ratio of 2:1 at G = 0.2. The results of Ramanujan and Pozrikidis [8] are also presented
in Figs. 13 and 14(a). Satisfactory agreements are observed.

4.3. Inertia effects

To demonstrate the versatility of the present method, the effect of inertia is considered. The linear shear
flow past spherical capsules with neo-Hookean membranes is studied at Reynolds number ranging from
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0.25 to 25. To our knowledge, the effect of inertia on the transient deformation of three-dimensional liquid-
filled capsules with elastic membranes has not been explored so far.

The linear shear flow is generated by two solid walls moving in opposite directions. The computational
domain is a cubic box with length 8a, which is the distance between the two moving walls. The capsule is
at the center of the domain. The boundary conditions at the upper and lower planes of the computational
domain are set as solid walls moving in opposite directions. Periodic boundary conditions are employed on
the other four boundary planes. For Re = 0.25 and 2.5, the fine mesh block covers from 2a to 6a in all axes.
The grid resolutions in coarse and fine blocks and the disretization of the membrane are the same as those in
the previous sections. For Re = 10 and 25, the fine mesh block covers from 1.5a to 6.5a in all axes, and the grid
resolutions are: Dxc = Dyc = Dzc = a/8, Dxf = Dyf = Dzf = a/16. The membrane is discretized into 32768 flat
triangular elements connecting 16386 nodes. Grid convergence studies showed that the mesh resolutions are
sufficient.

The temporal evolutions of the capsules’ Taylor shape parameter and inclination angle are presented in
Fig. 15(a) and (b) for G = 0.05 and in Fig. 16(a) and (b) for G = 0.1, with Reynolds number ranging from
0.025 to 25. At moderate Reynolds numbers, it is quite interesting to find that before the capsules achieve
steady states, there is a transient process due to the inertia effect, especially apparent at higher Reynolds num-
bers. This phenomenon is quite different from that of capsule deformation in simple shear flow at vanishing
Reynolds number, in which the capsules achieve steady states monotonically. In the transient period, the Tay-
lor shape parameter and capsule inclination show dampened oscillations. Similar transient process, which is
due to the effect of inertia, has been observed for liquid drops in the numerical study of Lee and Pozrikidis
[33].

After the transient period, the capsules achieve steady configurations. Through comparison of the steady
Taylor shape parameters at different Reynolds numbers, it is found that the inertia effect promotes the capsule
deformation. It is also found that the curves for Re = 0.25 are comparable with that for Re = 0.025, which
may suggest that the inertia effect on the capsule deformation is still very small up to Re = 0.25.

Inertia effect tends to increase the capsule deformation; it also induces an initial transient process, in which
the capsule’s shape and inclination show dampened oscillations at larger Reynolds number. Thus for a capsule
under the same shear rate, the time it takes to achieve a steady state is longer at higher Reynolds number. In
Figs. 15 and 16 the computations were stopped shortly after steady state was achieved.

For all cases considered, the capsule achieves a steady state. The flow fields in the plane of shear around the
cross sections of the capsules for G = 0.1 are plotted in Fig. 17 for different Reynolds number from 0.25 to 25.
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Fig. 15. Temporal evolution of (a) Taylor shape parameter; (b) inclination angle of spherical capsules with NH membrane at G = 0.05
under various Reynolds numbers.
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It is seen that the cross sections of the capsules, which are represented by bold solid lines, resemble closed
streamlines. This shows that the capsules have achieved steady shapes. Through comparison of the flow field,
it is found that inertia has significant effect. For example, the size of recirculating regions increases with the
Reynolds number increasing.

It is also interesting to investigate steady three-dimensional configuration of the capsules at various Rey-
nolds numbers. Fig. 18(a) and (b) present the steady profiles of capsules at Re = 0.25 and 25 at dimensionless
shear rate G = 0.1. The corresponding cross-sections of the capsules can be found in the previous Fig. 17(a)
and (d). At small Re = 0.25, the capsule achieves an ellipsoidal shape. However at moderate Re = 25, the
Fig. 18. Steady profiles of the capsules at (a) Re = 0.25; (b) Re = 25.
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steady shape looks very different. It resembles a flat disk, with two ends of large curvature pointing upwards or
downwards.
Fig. 20. Snapshots of the capsule during the tank-treading motion. The diamond symbol represents the same membrane node on the
capsule’s cross section, which is moving in the plane of shear.
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4.4. Biconcave capsules

For biconcave capsules, whose shape resembles that of red blood cells, it is expected that they will carry out
tank treading motion in simple shear flow if the internal liquid is same as that outside and the shear rate is
large [8]. However, due to the complex geometry of the capsule, numerical instabilities were encountered in
previous computations, and the behavior was followed for an initial short stage [8,9]. So far, the tank treading
motion for three-dimensional biconcave capsules has not been fully recovered by numerical simulation.

To demonstrate the capacity of the present method, the deformation of capsules with biconcave shape is stud-
ied in simple shear flow in this section. The membrane of the capsule follows Skalak’s law (Eq. (3)), in which the
moduli ratio C is chosen to be 200 to take the membrane incompressibility into account. The computational
domain is a cubic box with side length 10a. The fine mesh block covers from 2a to 8a in all axes, and the grid
resolutions are: Dxf = Dyf = Dzf = a/8, Dxf = Dyf = Dzf = a/16. The membrane is discretized into 32768 flat tri-
angular elements connecting 16386 nodes, which is sufficient to capture the important characteristics.

Simulations are carried out for the deformation of capsules at G = 0.6, 0.9 and 1.2, with Re = 0.25. The
tank treading motion (the membrane rotates around the liquid inside) is observed. Similar to that of oblate
spheroidal capsules, during this tank treading motion, the capsule undergoes periodical shape deformation
and inclination oscillation. This unsteady tank-treading motion had been expected by Ramanujan and
Pozrikidis [8] in their study in which the motion was followed for an initial short stage.

The temporal evolution of the capsules’ inclination angle is presented in Fig. 19. To illustrate the capsules’
shape evolution during this unsteady tank-treading motion, the snapshots of the capsule’ profiles at G = 0.9
are presently in Fig. 20 at sequential dimensionless times. The legends at the lower right of the figures represent
the cross sections of the capsule in the plane of shear. The diamond symbol represents the same membrane
node. It is seen from Fig. 20 that during the membrane rotating around the liquid inside, the capsule is chang-
ing its shape and inclination. It is interesting to find that when the capsule is most elongated, its width (in y

direction) is smallest, and vice visa. This phenomenon can also be observed from Fig. 21, in which the tem-
poral evolution of the capsule’s length and width is presented. The simulation is stopped after the capsule
membrane has been rotating for a whole period. For all cases in this section, the membrane area change is
within 1% and the capsule volume change is within 0.2% during the computation.

5. Conclusions

A hybrid method is proposed to study the flow-induced deformation of three-dimensional, liquid-filled cap-
sules with elastic membranes. In the present approach, the immersed boundary concept is incorporated into
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the lattice Boltzmann method; and the multi-block strategy is employed to refine the mesh near the capsule. A
finite element model is incorporated to obtain the forces acting on the membrane nodes of the three-dimen-
sional capsule which is discretized into flat triangular elements. The present method was validated by studying
the transient deformation of initially spherical and oblate spheroidal capsules with various membrane laws
under shear flow. The present results agree well with published theoretical or numerical results. Compared
with the original immersed boundary-lattice Boltzmann method using uniform mesh in the whole computa-
tional domain [18,19], the present method is much more efficient. The present method is capable to take
the inertia effect into account. This was demonstrated by studying the deformation of spherical capsules in
shear flow at moderate Reynolds numbers, which has not be investigated so far. It was found that inertia
has significant effects on the transient deforming process and steady configurations of capsules, as well as
on the flow field. The transient deformation of capsules with initially biconcave disk shape was also simulated.
The unsteady tank treading motion was followed for a whole period in the present work. Due to numerical
instabilities encountered in previous computations [8,9], this motion has not been recovered by numerical sim-
ulation so far.
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